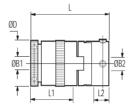
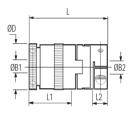
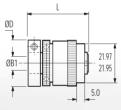

Size 16 Set Screw Shaft Fixing

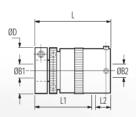

Size 25 Set Screw Shaft Fixing


Ref. 271 (2 plate) 279 (6 plate) Basic clutch (thro' bore)

Ref. 273 (2 plate) 281 (6 plate) Basic clutch + sleeve adaptor

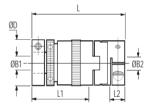


Ref. 277 (2 plate) 285 (6 plate) Basic clutch + Oldham (set screw) coupling

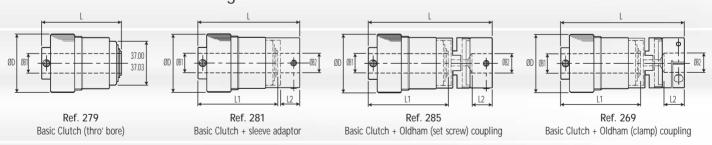

Ref. 267 (2 plate) 269 (6 plate) Basic clutch + Oldham (clamp) coupling

Size 25 Clamp Shaft Fixing

50


Ref. 401 (2 plate) 409 (6 plate) Basic clutch (thro' bore)

Ref. 403 (2 plate) 411 (6 plate) Basic clutch + sleeve adaptor



Ref. 407 (2 plate) 415 (6 plate) Basic clutch + Oldham (set screw) coupling

Ref. 397 (2 plate) 399 (6 plate) Basic clutch + Oldham (clamp) coupling

Size 48 Set Screw Shaft Fixing

Materials & Finishes

Housing, adjuster ring, adaptors: Al. Alloy AEICO 62Sn T9

Irridite NCP finish

Hub: Steel, heat treated Clutch plates:

Size 25 Steel, heat treated

Size 48 Brass

Sintered bronze Bearings: Fasteners: Alloy steel, black oiled

Vari-Tork Adjustable Friction Clutches

DIMENSIONS & ORDER CODES

		Clamp	ØD	ØD L	1 L1	² L2	ØB1 max	ax Fasteners at B1 end			ØB2				Max	Moment	Mass
Model	Screw Hub	Hub						Screw	Torque Nm	Wrench	max	Screw	Torque Nm	Wrench	drag torque Ncm	of inertia kgm² x 10-8	kg x 10 ⁻³
	CLUTC	CH REF							2	111111			2	111111	IVCIII	3	3
16	311.16	-	16.0	26.0	5.0	7.0	4	M3	0.94	1.5	4	M3	0.94	1.5	0.5	30	14
	267.25	-	25.8	46.5	25.0	8.6	8	M3	0.94	1.5	12	M3	2.43	2.5	53	416	58
	271.25	-		26.4	thro'	-					-	-	-	-		242	37
	273.25	-		36.0	25.0	9.0					12	M4	2.27	2		382	50
25	277.25	-		46.5	25.0	8.6					12	M4	2.27	2		425	58
2-PLATE	-	397.25		54.5	33.0	8.6					12	M3	2.43	2.5		508	68
	-	401.25	25.8	34.4	thro'	-	8	M3	2.43	2.5	-	-	-	-	53	317	47
	-	403.25		44.0	33.0	9.0					12	M4	2.27	2		441	60
	-	407.25		54.5	33.0	8.6					12	M4	2.27	2		511	69
	269.25	-		53.4	31.0	8.6					12	M3	2.43	2.5		529	68
	279.25	-	25.8	32.4	thro'	-	8	M3	0.94	1.5	-	-	-	-	132	312	48
0.5	281.25 285.25	-		42.5 53.4	31.0 31.0	9.0 8.6					12 12	M4 M4	2.27	2		451	60
25 6-PLATE	283.23	399.25		60.8	39.0	8.6					12	M3	2.27 2.43	2 2.5		516 617	69 79
0-1 LAIL	-	409.25		40.7	thro'	-					-	-	2.43	2.5		381	58
	_	411.25	25.8	50.3	39.0	9.0	8	M3	2.43	2.5	12	M4	2.27	2	132	530	71
	_	415.25		60.8	39.0	8.6					12	M4	2.27	2		590	80
	269.48	-	48.0	102.0	65.0	16.7	16	M6	7.60	3.0	20	M4	5.66	3		8037	390
48	279.48	_		65.0	thro'	-					20	-	-	-	300	5548	278
6-PLATE	381.48	_		83.0	65.0	16.0					20	M5	4.62	2.5		7135	350
	285.48	-		102.0	65.0	16.7					20	M5	4.62	2.5		8037	390

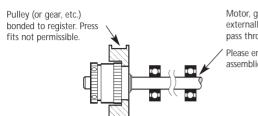
PERFORMANCE DATA

Size	Size 16	Size 25	Size 48
Power dissipation at 20°C 2-PLATE 6-PLATE	0.5 watt	7 watts 8.6 watts	18 watts
Backlash	0º max	2º max	zero
Max surface temperature	80° C	80° C	80° C
Max speed continuous slip	1000 rpm	1000 rpm	600 rpm

STANDARD BORES

		ØB1,ØB2 + 0.03/-0mm															
		4	6	6.350	7.938	8	9.525	10	12	12.700	14	15.875	16	18	19	19.050	20
Size 16	At B1 end	•															
	At B1 end	•															
Size 25	At B1 end		•	•	•	•											
	At B2 end		•	•	•	•	•	•	•								
Size 48	At B1 end					•	•	•	•	•	•	•	•				
	At B1 end						•	•	•	•	•	•	•	•	•	•	•
	Bore ref.	22	22	24	27	28	31	32	35	36	38	41	42	45	46	47	48
Corresponding bore adaptor				253		255		257		259			260				261

Diameters for which a bore adaptor is shown can be adapted to smaller shaft sizes. See page 56 for details

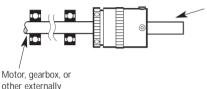

supported shaft

stics

How to install Vari-Tork

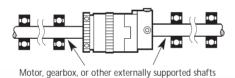
BASIC CLUTCH - REFS. 271, 279, 401 & 409

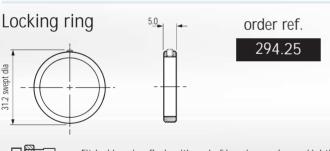
Controlled slip occurs between pulley and shaft.



Motor, gearbox, or other externally supported shafts can pass thro' hollow hub.

Please enquire for clutch/pulley assemblies.


BASIC CLUTCH + SLEEVE ADAPTOR - REFS. 273, 281, 403 & 411


Controlled slip occurs between LH & RH shafts. Clutch orientation not important, supported shaft may be entered either end.

Small spools, paddles, knobs, etc. can be attached after fitting a suitable stub shaft. Side loads must be minimal. Avoid connecting both ends of this clutch to externally supported shafts.

BASIC CLUTCH + FLEXIBLE COUPLING - REFS. 267, 269, 277, 285, 397, 399, 407 & 415 Controlled slip occurs between LH & RH shafts.

Fit locking ring flush with end of housing as shown. Lightly tension locking screw to secure the adjuster. Wrench size 1.5

Vari-Tork characteristics

The characteristics of dry plate clutches favour those applications which can tolerate relatively imprecise drag torques. Three tendencies should be noted:

BREAKAWAY TORQUE

After a period during which no slipping has taken place, the breakaway torque can be up to $2^{1/2}$ times the set value.

TORQUE DECAY

There is an inverse relationship between clutch temperature and slipping torque. The slipping torque reduces from the set value as the power being dissipated causes the clutch temperature to rise. When slipping continuously, torque settles at approximately 70% of the value set on a new clutch and at approximately 80% of the value set on a used clutch. This characteristic is not speed-dependent.

SPEED RELATED TORQUE FLUCTUATIONS

Variations in slipping speed cause a momentary increase in the prevailing output torque. The clutches behave more consistently at high speed/low torque than at low speed/high torque. High speed in this instance starts at approximately 500 rpm.

Where applications call for sustained slipping, the housing temperature should be maintained below 80°C. Clutches mounted concentrically within pulleys, gear wheels, etc. will be more effective at dissipating heat generated during slipping.

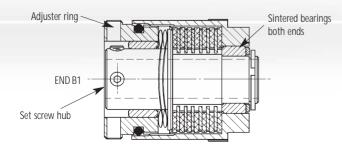
CALCULATING FOR POWER DISSIPATION

Given the slipping speed in rpm and the drag torque in Nm, the following equation can be used for calculating the power dissipation in watts (W).

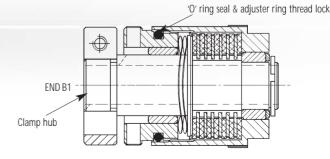
$$W = \frac{Nm \cdot rpm}{9.55}$$

Locking ring

In some circumstances it is possible for the adjuster ring to unscrew during operation. The adjuster ring can be secured by fitting locking ring ref. 294.25.


Removing the adjuster ring

- 1) If this should be necessary, be sure to replace the pressure plate first, then the spring washers. Ensure that the topmost friction ring is fully engaged with the splines. A disengaged friction ring will cause the clutch to malfunction.
- 2) To remove the adjuster ring, first remove the clamp. With set screw hubs the adjuster ring cannot be removed if the set screws protrude above the hub diameter. Flatting or dimpling of shafts is recommended and may be necessary with shafts larger than Ø6.35 to avoid the screws fouling the adjuster ring.


Waved washers

Two waved washers are fitted to these clutches. In some instances, better torque control may result from removing one of them, particularly when working in the lower torque ranges.

Construction - Size 25 Vari-Tork

Sectional view of 6-plate Vari-Tork Ref. 279.25 Shafts are secured by set screws accessed through radial holes in the adjuster ring.

Sectional view of 6-plate Vari-Tork Ref. 409.25 Shafts are secured by a split hub and ring clamp method which does not score the shafts.

